- Akdeniz, H., & Alpan, G. B. (2020). Özel yetenekli öğrencilerin yaratıcı problem çözme stillerinin analizi [Analysis of creative problem solving styles of gifted students.]. Talent, 10(1), 79-94. https://doi.org/10.46893/talent.758416 [Google Scholar] [Crossref]
- Al-Hroub, A. (2020). Use of the Jordanian WISC-III for twice-exceptional identification. International Journal for Talent Development and Creativity, 8(1), 121-144. https://doi.org/10.7202/1076752ar [Google Scholar] [Crossref]
- Al-Hroub, A. (2021). Utility of Psychometric and Dynamic Assessments for Identifying Cognitive Characteristics of Twice-Exceptional Students. Frontiers in Psychology, 12, 747872. https://doi.org/10.3389/fpsyg.2021.747872 [Google Scholar] [Crossref]
- Archambault Jr, F. X., Westberg, K. L., Brown, S. B., Hallmark, B. W., Emmons, C., L., & Zang, W. (1993). Regular classroom practices with gifted students: Results of a national survey of classroom teachers. (Research monograph 93102). The University of Connecticut, National Research Center on the Gifted and Talented. [Google Scholar]
- Assmus, D., & Fritzlar, T. (2022). Mathematical creativity and mathematical giftedness in the primary school age range: an interview study on creating figural patterns. ZDM–Mathematics Education, 54(1), 113-131. https://doi.org/10.1007/s11858-022-01328-8 [Google Scholar] [Crossref]
- Bahar, A. K., & Maker, C. J. (2020). Culturally Responsive Assessments of Mathematical Skills and Abilities: Development, Field Testing, and Implementation. Journal of Advanced Academics, 31(3), 211-233. https://doi.org/10.1177/1932202X20906130 [Google Scholar] [Crossref]
- Bahar, A. K., Maker, C. J., & Scherbakova, A. (2021). The role of teachers’ implementation of the Real Engagement in Active Problem Solving (REAPS) model in developing creative problem solving in mathematics. Australasian Journal of Gifted Education, 30(2), 26–39. https://search.informit.org/doi/10.3316/informit.134990209201977 [Google Scholar]
- Bayazıt, İ., Koçyiğit, N. (2017). Üstün zekâlı ve normal zekâlı öğrencilerin rutin olmayan problemler konusundaki başarılarının karşılaştırmalı olarak incelenmesi [A comparative study of the success of gifted and non-gifted students on non-routine problems.]. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1172-1200. [Google Scholar]
- Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani, H. (2000). Sex differences in mathematical reasoning ability at age 13: Their status 20 years later. Psychological science, 11(6), 474-480. https://doi.org/10.1111/1467-9280.00291 [Google Scholar] [Crossref]
- Budak, I. (2012). Mathematical profiles and problem solving abilities of mathematically promising students. Educational Research and Reviews, 7(16), 344-350. https://doi.org/10.5897/ERR12.009 [Google Scholar] [Crossref]
- Chang, L. L. (1985). Who are the mathematically gifted elementary school children?, Roeper Review, 8(2), 76-79. http://dx.doi.org/10.1080/02783198509552938 [Google Scholar]
- Çapan, B. E. (2010). Öğretmen adaylarının üstün yetenekli öğrencilere ilişkin metaforik algıları [Metaphorical perceptions of prospective teachers regarding gifted students]. The Journal of International Social Research, 3(12), 140-154. [Google Scholar]
- Galiullina, A. I., & Mefodeva, M. A. (2020). The phenomenon of mathematical giftedness as the issue of pedagogical psychology. Тенденции развития науки и образования, (59-4), 44-47. [Google Scholar]
- Galton, F. (1869). Hereditary genius. London: Macmillan. [Google Scholar]
- González, J. E., Gómez, J. L. L., & Alex, I. S. (2016). The posing of arithmetic problems by mathematically talented students. Electronic Journal of Research in Educational Psychology, 14(2),368–392. https://doi.org/10.14204/ejrep.39.15067 [Google Scholar] [Crossref]
- Gorodetsky, M., & Klavir, R. (2003). What can we learn from how gifted/average pupils describe their processes of problem solving?. Learning and instruction, 13(3), 305-325. https://doi.org/10.1016/S0959-4752(02)00005-1 [Google Scholar] [Crossref]
- Haataja, E., Laine, A., & Hannula, M. S. (2020). Educators’ perceptions of mathematically gifted students and a socially supportive learning environment–A case study of a Finnish upper secondary school. LUMAT: International Journal on Math, Science and Technology Education. https://doi.org/10.31129/LUMAT.8.1.1368 [Google Scholar] [Crossref]
- Heinze, A. (2005). Differences in problem solving strategies of mathematically gifted and non-gifted elementary students. International Education Journal, 6(2), 175-183. [Google Scholar]
- Heller, K. A., & Schofield, N. J. (2000). International Trends and Topics of Research on. International handbook of giftedness and talent (2nd ed.) (123). Oxford: Elsevier Science. [Google Scholar]
- Hong, E., & Aqui, Y. (2004). Cognitive and motivational characteristics of adolescents gifted in mathematics: Comparisons among students with different types of giftedness. Gifted Child Quarterly, 48(3), 191-201. https://doi.org/10.1177/001698620404800304 [Google Scholar] [Crossref]
- Jablonski, S., & Ludwig, M. (2019, February). Mathematical Arguments in the Context of Mathematical Giftedness–Analysis of Oral Argumentations with Toulmin. In Eleventh Congress of the European Society for Research in Mathematics Education (No. 18). Freudenthal Group; Freudenthal Institute; ERME. [Google Scholar]
- Johny, S. (2008). Some factors discriminating mathematically gifted and non-gifted students. Research in Mathematical Education, 12(4), 251-258. [Google Scholar]
- Koç Koca A., & Gürbüz, R. (2021). Problem solving strategies used by gifted secondary school students to solve math problems. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 21(1), 348-359. https://doi.org/10.17240/aibuefd.2021.21.60703-862916 [Google Scholar] [Crossref]
- Kontoyianni, K., Kattou, M., Pitta-Pantazi, D., & Christou, C. (2013). Integrating mathematical abilities and creativity in the assessment of mathematical giftedness. Psychological Test and Assessment Modeling, 55(3), 289. [Google Scholar]
- Krieg, F. J. (1973). Perceptual skills and cognitive skills as predictors of academic achievement. (Publication No. 7403223) [Doctoral dissertation, The Ohio State University]. ProQuest Dissertations & Theses Global. [Google Scholar]
- Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press. [Google Scholar]
- Kuo, C. C., Liang, K. C., Tseng, C. C., & Gau, S. S. F. (2014). Comparison of the cognitive profiles and social adjustment between mathematically and scientifically talented students and students with Asperger's syndrome. Research in Autism Spectrum Disorders, 8(7), 838-850. https://doi.org/10.1016/j.rasd.2014.04.004 [Google Scholar] [Crossref]
- Leikin, R. (2010). Teaching the mathematically gifted. Gifted Education International, 27(2), 161-175. https://doi.org/10.1177/02614294100270020 [Google Scholar] [Crossref]
- Leikin, M., Paz-Baruch, N., & Leikin, R. (2013). Memory abilities in generally gifted and excelling-in-mathematics adolescents. Intelligence, 41(5), 566-578. https://doi.org/10.1016/j.intell.2013.07.018 [Google Scholar] [Crossref]
- Leikin, R., Paz-Baruch, N., & Leikin, M. (2014). Cognitive characteristics of students with superior performance in mathematics. Journal of Individual Differences, 35(3),119– 129. https://doi.org/10.1027/1614-0001/a000140 [Google Scholar] [Crossref]
- Leikin, R., Koichu, B., Berman, A., & Dinur, S. (2017a). How are questions that students ask in high level mathematics classes linked to general giftedness?. ZDM, 49, 65-80. https://doi.org/10.1007/s11858-016-0815-7 [Google Scholar] [Crossref]
- Leikin, R., Leikin, M., Paz-Baruch, N., Waisman, I., & Lev, M. (2017b). On the four types of characteristics of super mathematically gifted students. High Ability Studies, 28(1), 107-125. https://doi.org/10.1080/13598139.2017.1305330 [Google Scholar] [Crossref]
- Leikin R. (2021). When practice needs more research: the nature and nurture of mathematical giftedness. ZDM: The International Journal on Mathematics Education, 53(7), 1579–1589. https://doi.org/10.1007/s11858-021-01276-9 [Google Scholar] [Crossref]
- Lubinski, D., & Benbow, C. P. (2006). Study of Mathematically Precocious Youth after 35 Years: Uncovering Antecedents for the Development of Math-Science Expertise. Perspectives on Psychological Science, 1, 316-345. https://doi.org/10.1111/j.1745-6916.2006.00019.x [Google Scholar] [Crossref]
- McCabe, K. O., Lubinski, D., & Benbow, C. P. (2020). Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology, 119(2), 390–416. https://doi.org/10.1037/pspp0000239 [Google Scholar] [Crossref]
- Maker, C. J. (2020). Culturally Responsive Assessments of Spatial Analytical Skills and Abilities: Development, Field Testing, and Implementation. Journal of Advanced Academics, 31(3), 234-253. https://doi.org/10.1177/1932202X20910697 [Google Scholar] [Crossref]
- Maker, C. J., Zimmerman, R., Bahar, A. K., & In-Albon, C. (2021). The influence of real engagement in active problem solving on deep learning: An important component of exceptional talent in the 21st century context. Australasian Journal of Gifted Education, 30(2), 40–63. https://search.informit.org/doi/10.3316/informit.135008842173235 [Google Scholar]
- Marland, S. P. (1972). Education of the gifted and talented: Vol. 1. Report to Congress of the United States by the U.S. Commissioner of Education. U.S. Government Printing Office. [Google Scholar]
- Montague, M. (1991). Gifted and learning-disabled gifted students' knowledge and use of mathematical problem-solving strategies. Journal for the Education of the Gifted, 14(4), 393-411. https://doi.org/10.1177/016235329101400405 [Google Scholar] [Crossref]
- Ozdemir, D., & Isiksal Bostan, M. (2021). A Design Based Study: Characteristics of Differentiated Tasks for Mathematically Gifted Students. European Journal of Science and Mathematics Education, 9(3), 125-144. https://doi.org/10.30935/scimath/10995 [Google Scholar] [Crossref]
- Ozdemir, A., Sipahi, Y., & Bahar, A. K. (2024). The Past, Present, and Future of Research on Mathematical Giftedness: A Bibliometric Analysis. Gifted Child Quarterly ,68(3), 206-225. https://doi.org/10.1177/00169862241244717 [Google Scholar] [Crossref]
- Pativisan, S. (2006). Mathematical problem solving processes of Thai gifted students. [Unpublished doctoral dissertation, Oregon State University]. ScholarsArchive@OSU. [Google Scholar]
- Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of information processing in generally gifted and excelling-in-mathematics adolescents. High Ability Studies, 25(2), 143-167. https://doi.org/10.1080/13598139.2014.971102 [Google Scholar] [Crossref]
- Paz-Baruch, N., Leikin, R., & Leikin, M. (2016). Visual processing in generally gifted and mathematically excelling adolescents. Journal for the Education of the Gifted, 39(3), 237-258. https://doi.org/10.1177/0162353216657184 [Google Scholar] [Crossref]
- Pitta-Pantazi, D., Christou, C., Kontoyianni, K., & Kattou, M. (2011). A model of mathematical giftedness: Integrating natural, creative, and mathematical abilities. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39-54. https://doi.org/10.1080/14926156.2011.548900 [Google Scholar] [Crossref]
- Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press. [Google Scholar]
- Renzulli, J. S. (1978). What makes giftedness? Reexamining a definition. Phi delta kappan, 60(3), 1-10. [Google Scholar]
- Renzulli, J. S. (1998). The three-ring conception of giftedness. In S. M. Baum, S. M. Reis, & L. R. Maxfield (Eds.), Nurturing the Gifts and Talents of Primary Grade Students. Creative Learning Press. http://www.gifted.uconn.edu/sem/semart13.html [Google Scholar]
- Ruthsatz, J., Ruthsatz-Stephens, K., & Ruthsatz, K. (2014). The cognitive bases of exceptional abilities in child prodigies by domain: Similarities and differences. Intelligence, 44, 11-14. https://doi.org/10.1016/j.intell.2014.01.010 [Google Scholar] [Crossref]
- Santos, E. M. M. D., Constantino, B., Rocha, M. M. D., & Mastroeni, M. F. (2020). Predictors of low perceptual-motor skills in children at 4-5 years of age. Revista Brasileira de Saúde Materno Infantil, 20, 759-767. https://doi.org/10.1590/1806-93042020000300006 [Google Scholar] [Crossref]
- Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. https://doi.org/10.1037/0022-0663.93.3.604 [Google Scholar] [Crossref]
- Sheffield, L. J. (2006). Mathematically promising students from the space age to the information age. The Mathematics Enthusiast, 3(1), 101-109. https://doi.org/10.54870/1551-3440.1039 [Google Scholar] [Crossref]
- Simut, C., & Godor, B. (2022). Investigating Potential Differences in the Approaches to Studying of Gifted and Normative Learners via PISA Math Tests Results. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje, 25(1), 101-138. https://doi.org/10.15516/cje.v25i1.4413 [Google Scholar] [Crossref]
- Singer, F. M., Sheffield, L. J., & Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: introduction to the special issue. ZDM Mathematics Education, 49(1), 5-12. https://doi.org/10.1007/s11858-017-0836-x [Google Scholar] [Crossref]
- Sipahi, Y. (2021). Problem-solving processes of mathematically gifted and non-gifted students. [Unpublished master thesis, Middle East Technical University]. OpenMetu. [Google Scholar]
- Sriraman, B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem-solving experiences of four gifted students. Journal of Secondary Gifted Education, 14(3), 151-165. https://doi.org/10.4219/jsge-2003-425 [Google Scholar] [Crossref]
- Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389 [Google Scholar] [Crossref]
- Sowell, E. J., Zeigler, A. J., Bergwall, L., & Cartwright, R. M. (1990). Identification and description of mathematically gifted students: A review of empirical research. Gifted Child Quarterly, 34(4), 147-154. https://doi.org/10.1177/0016986290034004 [Google Scholar] [Crossref]
- Spearman, C. (1904). The American Journal of Psychology. American Journal of Psychology, 15, 88. [Google Scholar]
- Stanley, J. C., Keating, D. P., & Fox, L. H. (1974). Mathematical talent: Discovery. description, and development. Johns Hopkins University Press. [Google Scholar]
- Stanley, J. C. (1977). Rationale of the Study of Mathematically Precocious Youth (SMPY) during its first five years of promoting educational acceleration. In J. C. Stanley, W. C. George, & C. H. Solano (Eds.), The gifted and the creative: A fifty-year perspective (pp. 75-112). Johns Hopkins University Press. [Google Scholar]
- Stanley, J. C. (1982). Identification of intellectual talent. In W. B. Schrader (Ed.), Measurement, guidance, and program improvement (pp. 97-109). Jossey-Bass. [Google Scholar]
- Stanley, J. C. (1996). In the beginning: The Study of Mathematically Precocious Youth. In C. P. Benbow & D. J. Lubinski (Eds.), Intellectual talent: Psychometric and social issues (pp. 225–235). Johns Hopkins University Press. [Google Scholar]
- Sternberg, R. J. (1999a). The theory of successful intelligence. Review of General psychology, 3(4), 292–316. [Google Scholar]
- Terman, L. M. (1954). The discovery and encouragement of exceptional talent. American Psychologist, 9(6), 221. [Google Scholar]
- Tjoe, H. (2015). Giftedness and aesthetics: Perspectives of expert mathematicians and mathematically gifted students. Gifted child quarterly, 59(3), 165-176. https://doi.org/10.1177/0016986215583872 [Google Scholar] [Crossref]
- Trinter, C. P., Moon, T. R., & Brighton, C. M. (2015). Characteristics of students’ mathematical promise when engaging with problem-based learning units in primary classrooms. Journal of Advanced Academics, 26(1), 24-58. https://doi.org/10.1177/1932202X14562394 [Google Scholar] [Crossref]
- Uclés, R. R., del Río Cabeza, A., & Martínez, P. F. (2018). Mathematical talent in Braille code pattern finding and invention. Roeper Review, 40(4), 255-267. https://doi.org/10.1080/02783193.2018.1501782 [Google Scholar] [Crossref]
- Van Tassel-Baska, J. (2001). The talent development process: What we know and what we don't know. Gifted Education International, 16(1), 20- 28. https://doi.org/10.1177/026142940101600105 [Google Scholar] [Crossref]
- Yazgan-Sağ, G. (2022). Views on Mathematical Giftedness and Characteristics of Mathematically Gifted Students: The Case of Prospective Primary Mathematics Teachers. Mathematics Teaching-Research Journal, 14(5), 125-137. [Google Scholar]
- Yildiz, D., & Durmaz, B. (2021). A gifted high school student’s generalization strategies of linear and nonlinear patterns via Gauss’s approach. Journal for the Education of the Gifted, 44(1), 56-80. https://doi.org/10.1177/01623532209782 [Google Scholar] [Crossref]
- Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127 [Google Scholar] [Crossref]
- Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12, 669-696. https://doi.org/10.1007/s10763-014-9513-5 [Google Scholar] [Crossref]
- Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM, 48, 321-335. https://doi.org/10.1007/s11858-016-0760-5 [Google Scholar] [Crossref]
- Wolfle, J. A. (1986). Enriching the mathematics program for middle school gifted students. Roeper Review, 9(2), 81-85. https://doi.org/10.1080/02783198609553015 [Google Scholar] [Crossref]
- Zhang, L., Gan, J. Q., & Wang, H. (2014). Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning. Frontiers in Human Neuroscience, 8, 430. https://doi.org/10.3389/fnhum.2014.00430 [Google Scholar] [Crossref]
- Zhang, L., Gan, J. Q., Zhu, Y., Wang, J., & Wang, H. (2020). EEG source‐space synchrostate transitions and Markov modeling in the math‐gifted brain during a long‐chain reasoning task. Human brain mapping, 41(13), 3620-3636. https://doi.org/10.1002/hbm.25035 [Google Scholar] [Crossref]
|